兮兮的兮兮 作品

第2章 算法选择与优化(第2页)

 强化学习算法的代码在屏幕上展开,林宇的眼神中重新燃起了希望。“这种算法能够让模型在与环境的不断交互中自我改进,具有很强的适应性。”他的手指在键盘上快速敲击,模拟着强化学习的过程。

 然而,很快他就遇到了难题。强化学习算法的收敛速度太慢,而且容易陷入局部最优解,导致模型无法达到理想的性能。林宇再次陷入了沉思,他在白板上写下了强化学习算法的优缺点,试图从中找到突破点。

 “如果能将深度神经网络的强大表示能力与强化学习的自主探索能力相结合……”林宇的脑海中突然闪过一个大胆的想法。他立刻投入到相关的研究中,翻阅了大量的学术文献和技术报告。

 在一篇最新的研究论文中,林宇发现了一种将两种算法融合的创新方法。他兴奋地将论文中的关键部分摘抄下来,眼睛里闪烁着激动的光芒。“就是这个!也许这就是解决问题的关键。”

 林宇迫不及待地开始将这种方法应用到实际的代码中。他精心设计着每一个参数,每一次的调整都充满了期待和忐忑。

 第一次运行融合后的算法,结果却让他大失所望。模型的性能不仅没有提升,反而出现了更多的错误和不稳定。林宇的心一下子沉到了谷底,但他并没有放弃。